什么是特征提取?

特征提取(Feature Extraction)是指从原始数据中提取出具有代表性和区分度的特征的过程,这些特征能够有效表征数据的核心属性,便于机器学习模型进行高效学习和准确预测。原始数据如文本、图像或声音通常包含冗余和噪声,特征提取通过技术 […]

什么是特征选择?

特征选择(Feature Selection)是机器学习中的一种核心技术,指从原始特征集合中挑选出最具预测力、最相关的特征子集的过程,目的在于简化模型结构、提升预测准确率、降低过拟合风险、减少计算成本,并增强模型的可解释性。通过剔除冗余或无 […]

什么是特征工程?

特征工程(Feature Engineering)是指从原始数据中创建、选择和转换特征的过程,这些特征是机器学习模型输入的核心元素,旨在提升模型的预测准确性、泛化能力和可解释性。通过数据清洗、特征提取、特征选择和特征变换等步骤,特征工程将原 […]