什么是支持向量机(Support Vector Machine, SVM)?

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类任务,也可应用于回归问题。其核心思想是通过寻找一个最优超平面来分隔不同类别的数据点,并最大化类间的间隔(margin),支持向量则是距离该超平面最近的样本点,决定了决策边界的位置。SVM利用核技巧处理非线性问题,在高维空间中构建有效模型,具有强大的泛化能力和对噪声数据的鲁棒性。

在AI产品开发的实际落地中,SVM广泛应用于文本分类(如垃圾邮件检测)、图像识别(如手写数字识别)、异常检测(如金融欺诈识别)和推荐系统(如用户兴趣分类)等场景。产品经理需注意其在小样本数据集上的高效性优势,但在处理大规模数据时可能面临训练速度慢和计算资源消耗大的挑战,因此在产品化过程中常需结合特征工程和优化策略来平衡性能与效率。

免费资料

请填写下表,我们将免费为您寄送考试大纲和课程学习资料(电子版)。

女士 先生

注意:所有带*资料均须正确填写。