什么是联邦学习与LLM?

联邦学习(Federated Learning)是一种分布式机器学习方法,允许多个参与方(如移动设备或组织)在本地数据集上训练模型,而无需共享原始数据,仅通过聚合模型更新(如梯度)构建全局模型,从而有效保护数据隐私和安全性,特别适用于数据分 […]

什么是模型剪枝策略?

模型剪枝策略(Model Pruning Strategy)是一种优化深度学习模型的技术,旨在通过移除模型中冗余或不重要的参数(如权重或神经元)来减小模型的规模、降低计算复杂度,同时尽可能维持其原始性能水平。这种策略包括权重剪枝、神经元剪枝 […]

什么是结构化数据检索?

结构化数据检索是指从具有预定义格式和模式的数据源中高效查找、筛选和提取特定信息的过程。结构化数据通常存储在关系数据库、表格或电子表格中,其数据元素以固定字段和数据类型组织,如SQL数据库中的行与列。检索过程依赖查询语言(如SQL)和索引技术 […]

什么是可信赖AI框架?

可信赖AI框架(Trustworthy AI Framework)是一套系统化的方法论和工具集,旨在指导人工智能系统的设计、开发与部署过程,确保其在可靠性、公平性、可解释性、安全性和隐私保护等方面达到高标准。它通过嵌入伦理考量和风险管理机制 […]

什么是因果推断与LLM?

因果推断(Causal Inference)是一种统计学和机器学习方法,旨在识别变量间的因果关系而非仅仅相关关系,它通过实验设计或观察数据来估计干预对结果的影响,从而提升模型的可解释性和决策可靠性。在人工智能领域,因果推断帮助系统理解“为什 […]